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1 Introduction

Studies have shown that the majority of errors in software systems are due to incorrect requirements

speci�cations. The root cause of many requirements errors is the imprecision and ambiguity that

arise because the software requirements are expressed in natural language. An e�ective way to

reduce such errors is to express requirements in a formal notation. For a number of years, researchers

at the Naval Research Laboratory (NRL) have been working on a formal method based on tables to

specify the requirements of practical systems [2, 11]. Known as the Software Cost Reduction (SCR)

method, this approach was originally formulated to document the requirements of the Operational

Flight Program (OFP) for the U.S. Navy's A-7 aircraft [2]. Since SCR's introduction more than

a decade ago, many industrial organizations, including Lockheed, Grumman, and Ontario Hydro,

have used SCR to specify requirements. Recently, NRL has developed both a formal state machine

model [12, 14] to de�ne the SCR semantics and a set of software tools to support analysis and

validation of SCR requirements speci�cations [10]. The tools support consistency and completeness

checking, simulation, and model checking.

To evalute the SCR method and toolset, we recently used SCR to produce a black box require-

ments speci�cation of a simpli�ed mode control panel for the Boeing 737 autopilot. Beginning with

the English language description of the system presented in [4], we represented the environmental

quantities that the computer system monitors (e.g., the pilot switches, dials, and sensors) and

the environmental quantities that the computer system controls (i.e., the individual displays) as

monitored and controlled variables. We then used these variables and the SCR tabular notation to

specify the requirements of the mode control panel. The heart of the speci�cation is the relation

REQ, the required relation between the monitored and controlled variables [20].

In this paper, we use the autopilot mode control panel as an example for comparing and con-

trasting the SCR approach to requirements speci�cation and analysis with the approach used in

[4]. The latter approach uses the formal language of SRI's Prototype Veri�cation System (PVS)

xThis work was supported by the O�ce of Naval Research.
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[17] to represent the requirements of the mode control panel and then applies the automated rea-

soning provided by PVS to analyze the speci�cation. Formulating the requirements speci�cation

for the mode control panel in SCR exposed a number of problems, including a missing input event,

an incorrect assumption about the environment, and a misinterpretation of the prose description.

We also discovered that because parts of the PVS speci�cation are highly abstract, certain key

aspects of the system's requirements are omitted. In contrast, the SCR approach makes explicit

many important questions about the required behavior of the mode control panel. We conclude

with a discussion of general issues such as the appropriate level of abstraction for documenting

requirements, the choice of notation, the kinds of analyses that can be done on the speci�cation,

the relation between di�erent kinds of analyses, and the role of tool support. Appendix B contains

the complete SCR requirements speci�cation of the mode control panel.

2 Motivation and Background

It is widely acknowledged that requirements are a major source of errors during the development of

large software systems [1, 9, 16]. For example, studies by Lutz [16] have shown that functional and

interface requirements were the source of a majority of safety-related software errors in NASA's

Voyager and Galileo spacecrafts. There is no doubt that getting a complete and consistent charac-

terization of software requirements is inherently hard. However, there are failings in the software

development process, including the requirements process, that can be recti�ed by improved practice

[8]. A disciplined and rigorous approach to the analysis and speci�cation of software requirements

can address many di�culties that result from such failings.

The goal of the requirements phase is to create a document, the Software Requirements Spec-

i�cation (SRS), to precisely describe the problem to be solved and to accurately characterize the

set of acceptable solutions to the problem. The e�ectiveness of the requirements phase is deter-

mined by the extent to which the SRS is precise, unambiguous and consistent (i.e., its correctness),

whether it captures all the results of the analysis (i.e., its completeness), and its usability. The

usability criteria are ease of change (i.e., its modi�ability), whether the notation is understandable

both by customers as well as the developers (i.e., its readability), its organization for easy reference

and review (for instance, one should quickly be able to �nd answers to speci�c questions about

the requirements), and organization for ease of change. In addition, the underlying conceptual

model and notation of the SRS should support formal analyses such as validation (to ensure that

the speci�cation describes the intended requirements), and veri�cation (which establishes that the

speci�cation satis�es critical properties of interest). Finally, the method should provide guidelines

that support decisions on organization and modi�cation of the SRS. By su�ciently constraining

the underlying semantic model, these guidelines ensure that the quality of the SRS does not depend

too much on the level of expertise of its writer(s).

2.1 The SCR Method

Unlike traditional research on requirements, which concentrates on the requirements analysis pro-

cess, the focus of the SCR work at the Naval Research Laboratory is on issues that inuence the

creation and maintenance of the SRS. By identifying desirable properties of an SRS, the SCR
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project has developed a set of guidelines for writing the SRS [11, 8]. These guidelines include

separation of concerns, information hiding, and the use of a readable yet formal notation. For

example, the guideline separation of concerns supports usability, modi�ability, and veri�ability of

the SRS. Moreover, the notation supported by the SCR method is designed to be understandable

both by customers as well as software developers. Underlying the notation is a mathematical model

which supports completeness and consistency checking, validation, test case generation, and formal

veri�cation.

To support the SCR method, NRL has developed a set of software tools for analysis and

validation of SCR requirements speci�cations [10, 13]. The tools include a speci�cation editor for

creating and modifying the speci�cations, a simulator for symbolic execution, and tools for formal

analysis. The latter include a consistency checker which uncovers application-independent errors

such as syntax and type errors, missing cases, and unwanted nondeterminism, and a veri�er which

checks a speci�cation for critical application-speci�c properties.

2.2 PVS

PVS (Prototype Veri�cation System) [17] is an environment for speci�cation and veri�cation de-

veloped at SRI International. The PVS system is built around a highly expressive speci�cation

language. The system has a number of prede�ned theories, and comes with a very e�ective in-

teractive theorem prover in which most of the low-level proof steps are automated. The PVS

speci�cation language is based on higher-order logic with a richly expressive type system. The

PVS prover consists of a powerful collection of inference steps which include arithmetic and equal-

ity decision procedures, automatic rewriting, and boolean simipli�cation. PVS has been applied

to a number of practical problems [4, 5, 21]. Many organizations, including NASA, have used the

PVS speci�cation language for documenting software requirements.

3 Comparison of PVS with the SCR method

In this section, we address some of the strengths and limitations of using PVS, and compare the

PVS approach to the SCR method. We base our comparison on the assumption that a notation (and

associated tools) should support the following process, which may be thought of as an idealization

of a real-world process for requirements analysis [19].

1. SRS Creation: The results of problem analysis are captured in the SRS, using a formal

notation.

2. SRS Checking: The SRS is checked for proper syntax, type correctness, consistency, com-

pleteness, and other application-independent properties, using an automated checker.

3. SRS Validation: The goal of this phase is to ensure that the SRS captures the customers'

intent. This is achieved by symbolically executing the SRS using a simulator.

4. SRS Veri�cation: This phase veri�es that certain crucial application speci�c properties, such

as safety and security properties, hold for the SRS. Veri�cation is carried out by using an

interactive theorem prover or by \lightweight" analysis tools such as model checkers.
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3.1 SRS Creation

The choice of notation, and availability of guidelines to support decisions on SRS organization

and modi�cation, are factors which inuence this phase. A simpler, more restrictive notation is

preferable to a more powerful, expressive one. In addition to ease of use, a restricted semantic

model can provide guidelines for creating and organizing the SRS. A well-designed notation will

help even novices create good speci�cations.

The PVS system is built around a highly expressive speci�cation language. However, most

developers, being unfamiliar with higher-order logic (the underlying formalism of the PVS spec-

i�cation notation), lambda expressions, higher-order functions and quanti�cation, etc, �nd the

notation hard to use. It has also been our experience that the expressive power of higher-order

logic is seldom required for requirements speci�cation of most practical systems. The organizing

unit for PVS speci�cations is the \Theory". The PVS language lacks structures to support read-

ability and ease of change. It is very hard for novices to create good PVS speci�cations. For

example, it has been observed by Young [22] that the quality of speci�cations in PVS depends to

a large extent on the expertise of the speci�cation writer.

The SCR method is suitable for embedded, real-time systems, i.e., for systems that sense and

control quantities in their environment [20]. The SCR method includes a systematic approach

for capturing requirements [11, 15, 6], and is based on a tabular notation which has a formal

mathematical basis [12, 13, 14]. The SCR notation, having been tailored to a speci�c class of

problems, sacri�ces generality for ease of use and improved support for analysis. Most engineers

�nd the tabular notation easy to use and understand. Also, tables a�ord a natural organization

which permits independent construction, review, modi�cation, and analysis of smaller parts of a

large requirements speci�cation.

It has been observed that in comparison to graphical notations and (structured) text, tabular

notations scale very well to large problems. According to Parnas, the speci�cation of the shutdown

system for the Darlington Nuclear Power Plant [18] weighed more than 20 kilograms on paper. In

our own experience, we have come across examples of SCR requirements speci�cations for practical

systems (e.g., the OFP for the C-130J aircraft [7]) containing more than a thousand tables.

3.2 SRS Checking

In addition to checks for incorrect syntax, the PVS language has a rich type system which supports

rigorous typechecking. The type system of PVS is undecidable, which means that typechecking

cannot be completely automated. In most situations, the PVS typechecker will generate proof

obligations which have to be proved using the interactive prover. Such proofs amount to a very

strong consistency check on some aspects of the speci�cation.

The consistency and completeness checker of the SCR toolset veri�es application-independent

properties derived automatically from the requirements model. These checks ensure that a speci�-

cation is well-formed by identifying syntax and type errors, incompleteness, missing initial values,

unreachable modes, and circular de�nitions. The tool also identi�es missing cases and undesirable

nondeterminism. All these checks are carried out automatically.
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3.3 SRS Validation

PVS does not support validation.

The tabular notation of SCR supports validation by inspection and simulation. Most domain

experts �nd this notation easy to read and review. For example, Parnas [18] observes that the

utility of the tabular notation was evident during the formal review of the Darlington speci�cation.

During the review, each \case" and its associated subcases could be reviewed individually and inde-

pendently of other \cases". The tabular notation also forces one to consider all possible scenarios.

Further, we show in [3] that theorems that are true of certain fragments of an SCR requirements

speci�cation also hold for the whole speci�cation.

The simulator in the SCR toolset performs symbolic execution of the underlying state machine

model, which allows users to assess system behavior in speci�c \use cases" directly from the re-

quirements speci�cation. The simulator can expose problems | such as missing requirements and

incorrectly stated requirements | that cannot be detected by veri�cation techniques.

3.4 SRS Veri�cation

Using PVS, one can establish, by interactive theorem proving, properties that are deemed to be

true of a requirements speci�cation. However, few practitioners have the mathematical sophistica-

tion required to carry out such proofs. The state-of-the-art theorem prover of PVS does ameliorate

the problem by including powerful decision procedures that automate parts of a proof that would

otherwise require user guidance. Very often, a property will not hold for a requirements speci�-

cation. In such a case, either the formulation of the property is incorrect, or the speci�cation is

wrong (or both). Proper diagnosis and user feedback are therefore very important to help correct

the problem. Theorem provers provide very little help in such situations because theorem proving

is incomplete; i.e., if one is unable to prove a theorem using a theorem prover, then all one can

conclude is that the theorem prover failed to �nd a proof (the theorem may be true). On the other

hand, methods such as model checking are complete | if a model checker reports that a theorem

is false, it is false. Additionally, most model checkers will provide a counterexample that falsi�es

the theorem. PVS does support model checking for a limited subset of the language, but provides

no counterexample.

The SCR toolset supports proof of safety properties of a requirements speci�cation using state

exploration based model checking [3]. One of the main design goals of our toolset is to provide

proper error diagnosis by generating understandable counterexamples for user feedback. Future

plans include support for other forms of model checking and automatic theorem proving. Since the

underlying model of the SCR notation is a state machine, several other veri�cation activities can be

supported. For instance, we plan to automatically generate test-cases from an SCR speci�cation,

to assist in black-box testing of implementations. In certain limited contexts, it should also be

possible to automatically generate code directly from an SCR requirements speci�cation.

4 The Autopilot Requirements Speci�cation

To illustrate the SCR method, we consider a simpli�ed mode control panel for the Boeing 737

autopilot as discussed in [4]. The mode control panel for the autopilot is shown in Figure 1.

5



"!
# 

"!
# 

"!
# 

���

��
��

��
��

ATTsw CASsw

FPAsw ALTsw

ALTdisplay

FPAdisplay

CASdisplay

ALTdesired

FPAdesired

CASdesired

Figure 1: Mode Control Panel
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The system monitors the aircraft's altitude (ALT), ight path angle (FPA) and calibrated air

speed (CAS). The panel includes three displays which show the current values for altitude, ight

path angle, and airspeed of the aircraft. The pilot may enter a new value into a display by \dialing-

in" the value using one of three knobs next to the displays. The pilot engages or disengages the

autopilot by pressing one of four buttons on the panel. Appendix A contains a description of

the system in English prose (adapted from [4]). Below, we informally present the steps taken to

document the requirements using the SCR notation.

In SCR, the required system behavior is described by REQ, the required relation between

monitored variables, environmental quantities that the system monitors, and controlled variables,

environmental quantities that the system controls [20]. To specify this relation concisely, the SCR

approach uses four constructs { modes, terms, conditions, and events. A mode class is a variable

whose values are system modes (or simply modes), while a term is any function of monitored

variables, modes, or other terms. A condition is a predicate de�ned on one or more system entities

(an entity is a monitored or controlled variable, mode class, or term). An event occurs when the

value of any system entity changes. The notation \@T(c) WHEN d" denotes a conditioned event,

de�ned as

@T(c) WHEN d
def
= :c ^ c0 ^ d ;

where the unprimed condition c is evaluated in the \old" state, and the primed condition c0 is

evaluated in the \new" state. The notation \@F(c)" denotes the event @T(NOT c). The environ-

ment may change a monitored quantity, causing an input event. In response, the system changes

controlled quantities and updates terms and mode classes.

We begin by identifying the monitored quantities, i.e., the environmental quantities that the

autopilot system monitors, and denote them by corresponding monitored variables. We use the

pre�x \m" for all monitored variable names. Each monitored variable is of a certain type, which

speci�es the range of values that may be assigned to that variable. The autopilot system moni-

tors the actual altitude (denoted by monitored variable mALTactual), the actual ight path angle

(mFPAactual), and the actual calibrated air speed (mCASactual). We assume these variables to

range over the integers. Switches ALTsw, ATTsw, CASsw, and FPAsw are denoted respectively by

mALTsw, mATTsw, mCASsw, and mFPAsw. These monitored variables may take on one of the values

from the set fon; offg. Finally, knobs ALTdesired, CASdesired, and FPAdesired are denoted by

monitored variables mALTdesired, mCASdesired, and mFPAdesired respectively, which range over

the integers.

We then identify the controlled quantities, i.e., the environmental quantities that the autopilot

system controls, and denote them by corresponding controlled variables. We use the pre�x \c" for

all controlled variable names. Just as for monitored variables, we assign a type to each controlled

variable. For simplicity of exposition we shall, as in [4], only model the mode-control panel itself,

and not the commands that will be sent out to the ight-control computer. The three controlled

quantities of the mode control panel are ALTdisplay, FPAdisplay, and CASdisplay, which we

denote respectively by cALTdisplay, cFPAdisplay, and cCASdisplay. We assume these values to

range over the integers.

We model the primary modes of the mode-control panel by the modeclass Status, denoted by

variable mcStatus. The variable can take on any value in the set fALTmode; ATTmode; FPAmodeg.

The altitude engaged mode being \armed" is denoted by a boolean term variable tARMED (we use
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the pre�x \t" for terms). If tARMED is true, then mcStatus should be FPAmode. The previous

sentence is an example of a property of the speci�cation which we may later want to prove. We

also de�ne a boolean valued term tCASmode, to model the system being in the calibrated air speed

mode. By describing the status of the mode-control panel in this manner, we have ensured that

the following sentences in the prose requirements are trivially satis�ed:

1. Only one of the three modes ALTmode, ATTmode, or FPAmode can be engaged at any time.

2. One of the three modes, ATTmode, FPAmode, or ALTmode should be engaged at all times.

3. Engaging any of the three modes will automatically cause the other two to be disengaged since

only one of these three modes can be engaged at a time.

4. The mode CASmode can be engaged at the same time as any of the other modes.

We de�ne three boolean valued terms tALTpresel, tCASpresel, and tFPApresel to denote

whether the corresponding quantity has been pre-selected by dialing in a new value using one of

the three knobs. Finally, we de�ne a boolean term tNear to denote the predicate mALTdesired�

mALTactual � 1200.

The behavior of mode class mcStatus is speci�ed in a mode transition table. In the following,

the expression CHANGED(x) denotes the event \variable x has changed". The table de�nes all events

that change the value of the mode class mcStatus. For example, the �rst row of the table states, \If

mcStatus is ALTmode, and mATTsw is switched on, or the setting of knob mALTdesired is changed,

then mcStatus changes to ATTmode." Events that do not change the value of the mode class are

omitted from the table.

Source Mode Events Destination Mode

ALTmode @T(mATTsw = on) OR CHANGED(mALTdesired) ATTmode

ALTmode @T(mFPAsw = on) FPAmode

ATTmode @T(mALTsw = on) WHEN (tALTpresel AND tNear) ALTmode

ATTmode @T(mFPAsw = on) OR @T(mALTsw = on) WHEN

(tALTpresel AND NOT tNear)

FPAmode

FPAmode @T(mALTsw = on) WHEN (tALTpresel AND tNear) OR

@T(tNear) WHEN tARMED

ALTmode

FPAmode @T(mATTsw = on) OR @T(mFPAsw = on) OR

CHANGED(mALTdesired) WHEN tARMED

ATTmode

Each row in the mode transition table above corresponds to certain sentences in the prose

requirements. We describe this correspondence below. Here, \paragraph x" refers to the numbered

paragraph x of the prose requirements in Appendix A.

Row 1. The pilot engages a mode by pressing the corresponding button on the panel (paragraph 1) i.e.,

pressing ATTsw should engage ATTmode OR If the pilot dials in a new altitude while ALTmode

is engaged, then ALTmode is disengaged and ATTmode is engaged (paragraph 7).

Row 2. The pilot engages a mode by pressing the corresponding button on the panel (paragraph 1) i.e.,

by pressing FPAsw the pilot engages FPAmode.
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Row 3. The pilot engages a mode by pressing the corresponding button on the panel (paragraph 1) i.e.,

pressing ALTsw engages ALTmode. However, the altitude must be pre-selected before ALTsw is

pressed (paragraph 4). If the pilot dials an altitude that is more than 1; 200 feet above ALTactual

and then presses ALTsw, then ALTmode will not directly engage (paragraph 3).

Row 4. The pilot engages a mode by pressing the corresponding button on the panel (paragraph 1) i.e.,

by pressing FPAsw the pilot engages FPAmode OR If the pilot dials into ALTdesired an altitude

that is more than 1; 200 feet above ALTactual and then presses ALTsw, then ALTmode will not

directly engage. Instead, the altitude engage mode will change to \armed" and FPAmode is

engaged (paragraph 3).

Row 5. The situation described for row (3) above OR Instead, the altitude engage mode will change to

\armed" and FPAmode is engaged. [: : :] FPAmode will remain engaged until the aircraft is within

1; 200 feet of ALTactual, then ALTmode is automatically engaged (paragraph 3).

Row 6. The pilot engages a mode by pressing the corresponding button on the panel (paragraph 1) i.e.,

by pressing mATTsw the system enters ATTmode OR FPAsw toggles on and o� every time it is

pressed. (paragraph 5) OR If the pilot dials in a new altitude while the altitude engage mode is

\armed" then ATTmode is engaged. [: : :] FPAmode should be disengaged as well. (paragraph 7).

The behavior of term tARMED is speci�ed in the event table below. Like mode transition tables,

event tables make explicit only those events that cause the variable de�ned by the table to change.

For example, the �rst entry in the �rst row states, \If mcStatus is ATTmode or FPAmode and mALTsw

is turned on when tALTpresel is true and tNear is false, then tARMED becomes true." The entry

\NEVER" in an event table means that no event can cause the variable de�ned by the table to

assume the value in the same column as the entry; thus, the entry \NEVER" in row 2 of the table

means that when mcStatus is ALTmode no event can cause tARMED to become true. An entry

\@T(Inmode)" in a row of a mode transition table or an event table denotes the event \system

entered the corresponding mode".

Modes Events

ATTmode,

FPAmode

@T(mALTsw = on) WHEN (tALTpresel

AND NOT tNear)

@F(mcStatus = FPAmode)

ALTmode NEVER @F(mcStatus = FPAmode)

tARMED = true false

We �nally present the behavior of the display cCASdisplay using the condition table below. This

table states that \If tCASpresel is true then cCASdisplay has the value mCASdesired; otherwise,

it has the value mCASactual". The complete autopilot speci�cation is in Appendix B.

Conditions

tCASpresel NOT tCASpresel

cCASdisplay = mCASdesired mCASactual
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5 Discussion of General Issues

In [3] we present a veri�cation technique for proving properties of SCR requirements speci�cations.

This technique proved to be valuable in detecting and correcting bugs in the autopilot speci�cation.

For example, an initial formulation of the speci�cation violated the property \the altitude engage

mode will be ARMED only when the ight path angle select mode is engaged". The counterexample

generated by the tool helped diagnose the error (we were setting tARMED to true when mcStatus is

ALTmode, and mALTsw is turned on when tALTpresel is true and tNear is false).

We found that the PVS model does not clearly distinguish a system's environmental quantities

from the dependent quantities. Also, by not clearly identifying environmental quantities the system

monitors, and environmental quantities the system controls, it was very hard to �nd an answer to

the question \What is the required behavior of the system?" by examining the PVS model. During

the process of creating the SCR requirements speci�cation, we came up with several questions for

which we could not �nd answers from the PVS model. This is because the PVS description is not

at the appropriate level of abstraction.

5.1 Appropriate Level of Abstraction

The PVS model of the autopilot in [4] is too abstract to serve as a requirements speci�cation, i.e.,

as a black box description of all acceptable system implementations. Rather than specifying the

required relationship between environmental quantities of the autopilot mode control panel, the

PVS description is an abstract model of the mode control panel. Therefore, it is not a require-

ments speci�cation. For example, the monitored quantity ALTactual is denoted abstractly by two

boolean variables alt reached and alt gets near; boolean variable input alt abstractly denotes

the pilot \dialing-in" the desired altitude using knob ALTdesired; etc. It is usual to make such ab-

stractions during veri�cation, because existing methods cannot be directly applied to requirements

speci�cations, which are too detailed. However, the right approach is to begin by formulating the

requirements speci�cation, and later to describe formally the relationship between the speci�cation

and the abstract veri�cation models. If the correspondence between the abstract models and the

requirements speci�cation is informal (or if the requirements speci�cation is never created), it leaves

room for misinterpretation.

5.2 Kinds of Analyses

In our experience, the �rst three phases of our idealized process for requirements analysis, viz., SRS

Creation, SRS Checking, and SRS Validation, are the most crucial ones. It is very likely that a

large proportion of activities of requirements analysis will be in support of these phases. It is also

safe to assume that for a majority of projects (barring a small number of projects developing safety

or mission critical applications) the last phase, i.e., SRS Veri�cation, will be completely skipped.

Since PVS concentrates exclusively on this phase of analysis, and provides poor support for the

initial three phases, it is unlikely to be very e�ective as a tool to support requirements analysis.

However, PVS has been e�ective in the analysis of critical algorithms and architectures for fault-

tolerance, such as the correctness of distributed agreement protocols for a hybrid fault model, and

in the veri�cation of crucial subsystems, such as a commercial avionics microprocessor.
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5.3 Role of Tool Support

In our experience, tools that support a limited analysis domain, with a speci�c conceptual model,

tend to be more e�ective than general purpose tools. If a method lacks a strong underlying con-

ceptual model, the bene�ts of automation are likely to be minimal ([8] provides more details). If a

method does not adequately constrain the problem, the corresponding support tools cannot guide

the developer when making di�cult decisions. Since the SCR method standardizes the problem

domain, the conceptual model, the notation, and the process, signi�cant automated tool support

is possible. For example, by using information about the current state of a speci�cation, and

knowledge of the process, a tool can guide developers in making the next step. Also, by providing

standard templates, a tool can automate the routine activities of SRS creation. By applying the

SCR method to several industrial problems, we plan to exploit the full potential of such tools.
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A Description of the autopilot

1. The mode-control panel contains four buttons for selecting modes and three displays for dialing

in or displaying values, as shown in Figure 1. The system supports the following four modes:

attitude control wheel steering (ATTmode), ight path angle selected (FPAmode), altitude engage

(ALTmode), and calibrated air speed (CASmode).

Only one of the �rst three modes can be engaged at any time. The mode CASmode can be

engaged at the same time as any of the other modes. The pilot engages a mode by pressing

the corresponding button on the panel. One of the three modes, ATTmode, FPAmode, or ALTmode

should be engaged at all times. Engaging any of the �rst three modes will automatically cause

the other two to be disengaged since only one of these three modes can be engaged at a time.

2. There are three displays on the panel: altitude (ALTdisplay), ight path angle (FPAdisplay),

and calibrated air speed (CASdisplay). The displays usually show the current values of altitude

(ALTactual), ight path angle (FPAactual), and air speed (CASactual) of the aircraft. How-

ever, the pilot can enter a new value into a display by dialing in the value using the knob next

to the display (ALTdesired, FPAdesired, or CASdesired). This is the target or \pre-selected"

value that the pilot wishes the aircraft to attain. For example, if the pilot wishes to climb to

25; 000 feet, he will dial 25; 000 (using the knob ALTdesired) into ALTdisplay and then press

ALTsw to engage ALTmode. Once the target value is achieved or the mode is disengaged, the

display reverts to showing the \current" value.

3. If the pilot dials into ALTdesired an altitude that is more than 1; 200 feet above the current

altitude (ALTactual) and then presses ALTsw, then ALTmode will not directly engage. Instead,

the altitude engage mode will change to \armed" and FPAmode is engaged. The pilot must then

dial in, using the knob FPAdesired, the desired ight-path angle into FPAdisplay, which will

be followed by the ight-control system until the aircraft attains the desired altitude. FPAmode

will remain engaged until the aircraft is within 1; 200 feet of ALTactual, then ALTmode is auto-

matically engaged.

4. CASdesired and FPAdesired need not be pre-selected before the corresponding modes are en-

gaged | the current values displayed will be used. The pilot can dial-in a di�erent target value

after the mode is engaged. However, the altitude must be pre-selected before ALTsw is pressed.

Otherwise, the command is ignored.

5. CASsw and FPAsw toggle on and o� every time they are pressed. For example, if CASsw is

pressed while the system is already in CASmode, that mode will be disengaged. However, if

ATTsw is pressed while ATTmode is already engaged, the command is ignored. Likewise, pressing

ALTsw while the system is already in ALTmode has no e�ect.

6. Whenever a mode other than CASmode is engaged, all other pre-selected displays should return

to current.

7. If the pilot dials in a new altitude while ALTmode is engaged or the altitude engage mode is

\armed", then ALTmode is disengaged and ATTmode is engaged. If the altitude engage mode is

\armed" then FPAmode should be disengaged as well.
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B SCR Speci�cation of the autopilot

Monitored Variables:

mALTactual, mCASactual, mFPAactual : Integer initially all 0;

mALTsw, mATTsw, mCASsw, mFPAsw : fon; offg initially all off;

mALTdesired, mCASdesired, mFPAdesired : Integer initially all 0;

Controlled Variables:

cALTdisplay, cCASdisplay, cFPAdisplay : Integer initially all 0;

Mode Class:

mcStatus : fALTmode; ATTmode; FPAmodeg initially ATTmode;

Terms:

tARMED : Boolean initially false;

tCASmode : Boolean initially false;

tALTpresel, tCASpresel, tFPApresel : Boolean initially all false;

tNear
def
= mALTdesired� mALTactual � 1200;

cALTdisplay

tALTpresel

mALTdesiredmALTactual

cFPAdisplay

tFPApresel

mFPAdesired mFPAactual

cCASdisplay

tCASpresel

mCASdesired mCASactual

tARMED

mFPAsw

mcStatus tCASmode

tNear

mALTsw mATTsw mCASsw

Figure 2: Variable Dependency Graph

Mode Transition Table for mcStatus

Source Mode Events Destination Mode

ALTmode @T(mATTsw = on) OR CHANGED(mALTdesired) ATTmode

ALTmode @T(mFPAsw = on) FPAmode

ATTmode @T(mALTsw = on) WHEN (tALTpresel AND tNear) ALTmode

ATTmode @T(mFPAsw = on) OR @T(mALTsw = on) WHEN

(tALTpresel AND NOT tNear)

FPAmode

FPAmode @T(mALTsw = on) WHEN (tALTpresel AND tNear) OR

@T(tNear) WHEN tARMED

ALTmode

FPAmode @T(mATTsw = on) OR @T(mFPAsw = on) OR

CHANGED(mALTdesired) WHEN tARMED

ATTmode
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Modes Events

ATTmode, FPAmode @T(mALTsw = on) WHEN

(tALTpresel AND NOT tNear)

@F(mcStatus = FPAmode)

ALTmode NEVER @F(mcStatus = FPAmode)

tARMED = true false

Events

@T(mCASsw = on) WHEN NOT

tCASmode

@T(mCASsw = on) WHEN

tCASmode

tCASmode = true false

Modes Events

ALTmode NEVER @T(mALTdesired =

mALTactual) OR @F(INMODE)

FPAmode CHANGED(mALTdesired) WHEN

NOT tARMED

NEVER

ATTmode CHANGED(mALTdesired) @T(INMODE) OR @T(mFPAsw =

on)

tALTpresel = true false

Events

CHANGED(mCASdesired) @F(tCASmode) OR @T(mCASdesired =

mCASactual) WHEN tCASmode

tCASpresel = true false

Events

CHANGED(mFPAdesired) @T(mcStatus = ATTmode) OR

@T(mcStatus = ALTmode) OR

@T(mFPAdesired = mFPAactual) WHEN

(mcStatus = FPAmode)

tFPApresel = true false

Conditions

tALTpresel NOT tALTpresel

cALTdisplay = mALTdesired mALTactual

Conditions

tCASpresel NOT tCASpresel

cCASdisplay = mCASdesired mCASactual

Conditions

tFPApresel NOT tFPApresel

cFPAdisplay = mFPAdesired mFPAactual
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